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Abstract: This research focuses on the development of a set of two-dimensional boundary 
conditions for specific governing equations. The governing equations are existing Boussinesq-
type equations which is capable of simulating wave-current interaction. The present boundary 
conditions consist of for waves only case and for currents only case. To simulate wave-current 
interaction, the two kinds of the present boundary conditions are then combined. A numerical 
model based on both the existing governing equations and the present boundary conditions is 
applied to simulation of currents only and of wave-current interaction propagating over a basin 
with a submerged shoal. The results of the numerical model show that the present boundary 
conditions go well with the existing Boussinesq-type wave-current interaction equations. 
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Introduction   
 
Boussinesq [1] developed the original formulation of 
the governing equations for a free surface flow, 
which included the effects of surface waves but in 
which the vertical dimension was eliminated. The 
formulation was in terms of the bottom velocity and 
was restricted to simulating waves moving over 
bathymetry with a flat bottom. The governing 
equations consist of one continuity equation and two 
momentum equations (in x and y directions). The 
governing equations were then called as Boussinesq 
equations. 
 
Peregrine [2] developed two new formulations in two 
horizontal dimensions for the case of varying depth 
in terms of (i) the depth-averaged velocity vector and 
(ii) the velocity vector at still water level. The first 
formulation became known as the standard form of 
Boussinesq-type equations. 
 
In 1993, Nwogu [3] developed a new approach in the 
derivation of a novel set of Boussinesq-type equations. 
The resulting equations are capable of simulating 
wave propagating over arbitrary bathymetry in 
terms of the horizontal velocity at an arbitrary level 
(Z = Z1) below still water level (-h < Z1 < 0) in which h 
is the local still water depth. The Boussinesq-type 
wave equations by Nwogu were solved numerically 
in one dimension by Nwogu and in two dimensions 
by Wei and Kirby [4].  
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Derivation of two-dimensional (2D) boundary 
conditions for the governing equations of Nwogu was 
also discussed by Wei and Kirby. 

 
In 1998, Chen et al. [5] extended the Boussinesq-type 
wave equations of Nwogu by incorporating a steady 
ambient current. As a result, the corresponding 
equations were capable of simulating wave-current 
interaction. The continuity equation can be 
expressed as 
ηt + ∇•[(h + η) u] + Π= 0  (1) 
and the momentum equation is 
ut + g∇η + (u•∇)u + Λt + Λs = 0 (2) 
where 
g = gravitational acceleration 
η = free surface elevation 
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u  = horizontal velocity vector, u(x,y,z,t) = (u,v) 
u  = horizontal velocity in the x direction, u(x,y,z,t) 
v  = horizontal velocity in the y direction, v(x,y,z,t) 
Π = ∇•(hΓ) – ∇•{1/6 h3 ∇(∇•u) – 1/2 h2 [∇•(hu)]} +η(h•Γ)  
  – 1/2 η2 ∇• {∇[∇•(hu)]} – 1/6 η3 ∇•[∇(∇•u)]  
Γ  = 1/2 (Z1)2 ∇(∇•u) + Z1∇[∇•(hu)]  
Λt = Γt – η∇[∇•(hut)] – 1/2 η2 ∇(∇•ut)   
Λs = (u•∇)Γ – η(u•∇)[∇•(hu)] – 1/2 η2(u•∇)[∇(∇•u)]  
 
The one dimensional (1D) form of these equations 
had been solved numerically by Chen et al. [5]. 
However, the 2D one has not been solved yet. To do 
so, the suitable 2D boundary conditions need to be 
derived first. This is the objectives of the present 
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study. Discussion regarding the numerical solution 
algorithm is not presented here, but can be found in 
Mera [6]. 

 
Boundary conditions for waves only case 
 
The set of 2D boundary conditions for waves only 
case is discussed first. The other cases of currents 
only and waves plus currents will be considered in 
subsequent sub-section. 

 
Incoming wave boundary conditions 
 
The free surface elevation η at the incoming wave 
boundary can be varied sinusoidally as 
η = 1/2 Hi sin (k • x - ωt)  (3) 
k • x = (k cos  x + (k sin θi) y 
 
In which Hi, is the incoming wave height, k, the 
wave number vector, x, the horizontal spatial vector, 
ω, the angular frequency = 2π/T, T, the wave period, 
and t is time. 
 
For a locally constant depth, the continuity equation 
(Eq. 1) reduces to 

ηt + (h + η)(∇•u) + u•∇η + [(α + 1/3) h3 + αh2η – 1/2 hη2  

– 1/6 η3] ∇•[∇(∇•u)] = 0 (4) 
where 
α = 1/2 (Z2)2 + Z2              0.5 < α < 0   

Z2 = 
h
Z1  -1 < Z2 < 0   

A periodic, small amplitude wave can be defined as 

η = ηa exp[i(k • x) - ωt],   u = ua exp[i(k • x) - ωt]  (5) 
where:  
ηa  = amplitude of the water surface elevation;  
ua  = amplitude of the horizontal velocity vector;  
i  = 1-  
θi  = incoming wave angle. 
 
Substituting Equation 5 into Equation 4 gives the 
horizontal velocity vector at the incoming wave 
boundary, i.e. 

u = 
}k{ ]/h/αh)h/[(αkh

ω
3
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123
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η
−−++−
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Outgoing wave boundary conditions 
 
The boundary condition for η is considered first. At 
the outgoing wave boundary, the Sommerfeld 
radiation condition [3] is used to allow the passage 
and egress of the wave energy, that is 
 
ηt + C • ∇η = 0  (7) 

where the wave celerity C = |C|cos θi + |C|sin θi. 
The boundary condition for the velocity components 
is considered next. The depth-integrated continuity 
equation can be expressed in terms of the depth-
averaged horizontal velocity vector u as 

ηt + ∇ • [(h + η)u ] = 0  (8) 
To eliminate ηt, substitute Equation 8 into the 
Sommerfeld radiation condition (Eq. 7) to give 

∇ • [(h + η)u ] = C • ∇η  (9) 
For a locally constant depth, Equation 9 may be 
integrated over the fluid domain to obtain the 
horizontal velocity vector 

u = C 
η

η
+h

  (10) 

Having solved for u  in Equation 10 is used to 
determined u. 
 
Reflecting wave boundary conditions 

 
The kinematic boundary condition at an impermeable 
wall can be stated as 
u • n = 0 x ∈ ∂Ω  (11) 
where n is an outward normal vector, Ω is the fluid 
domain, ∂Ω is the boundary and x is a position in the 
boundary. Consider, for example, the case of an 
impermeable wall being parallel to the x-axis. 
Equation 11 is a boundary condition and can be 
written as 
v = 0 x ∈ ∂Ω  (12) 
 
The slope and the curvature of v normal to the 
impermeable wall is assumed to be zero and 
expressed respectively as 

0
y
v

=
∂
∂ and 0

y
v
2

2

=
∂
∂  x ∈ ∂Ω  (13) 

or can be written symply as 

vy = 0 and vyy = 0 x ∈ ∂Ω  (14) 

in which the subscript y denotes partial differentiation 
with respect to the y direction 
 
The continuity equation (Eq. 1) can be expressed in 
terms of the volume flux vector Q as  

ηt  + ∇ • Q = 0  (15) 
where 

Q =  (h + η)(u + Γ) – 1/6 (h3 + η3)∇(∇•u) +  
 1/2 (h2 – η2)∇ [∇•(hu)]   

The kinematic boundary condition in terms of the 
volume flux vector at an impermeable wall as  
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Q • n = 0 x ∈ ∂Ω  (16) 
 
For the case of the impermeable wall being parallel 
to the x-axis, the volume flux in the y-direction at the 
boundary becomes zero or 
Qy = 0 x ∈ ∂Ω (17) 
i.e. 
(h + η)v + [1/2 (Z1)2 (h + η) – 1/6(h3 + η3)](uyy + vyy) + 
[z1(h + η) + 1/2(h2 + η2)][(hu)xy + (hv)yy] = 0 
 x ∈ ∂Ω (18) 
where the subscripts x and y denote partial 
differentiation with respect to the x and y directions 
respectively. Substituting Equation 18 into Equation 
1 gives a reflecting wave boundary condition for 
calculating the free surface elevation at the 
boundary wall as set out below 
ηt + [(h + η)u]x + Πx = 0 x ∈ ∂Ω (19) 

where 
Πx = [1/2(z2)2 – 1/6][h3(uxx + vxy)]x + (z2 + 1/2){h2[(hu)xx + 
 (hv)xy]} x + η1/2(z2)2[h2(uxx + vxy)]x +η(z2){h[(hu)xx 

+ (hv)xy]}x – 1/2η2[(hu)xxx + (hv)xxy] – 1/6 η3(uxxx + 
vxxy)   

 
For a locally constant depth, the horizontal velocity 
in the x-direction may be obtained by substituting 
Equations 12 and 13 into Equation 18 giving 
uxy = 0 x ∈ ∂Ω (20) 
 
For a boundary being parallel to the x-axis, the 
boundary conditions are Equations 19, 20 and 12 for 
η, u and v respectively. The derivation of the present 
boundary conditions for waves only case follows 
Mera [7], who derived a set of boundary conditions 
for the Boussinesq-type wave equations of Nwogu. 
 
Boundary conditions for currents only case 
 
Inflow Boundary Conditions 
 
At the upstream end, the depth-averaged velocity is 
specified but the boundary condition also needs to 
involve η. Inflow currents are bound to flow in the x-
direction. One way of linking u  and η at the 
upstream end is to combine the Sommerfeld 
radiation condition (Eq. 7) and the continuity 
equation (Eq. 8) to give 
2ηt + [(h + η)u ]x + Cηx = 0 x ∈ ∂Ω (21) 
and 
v = 0 x ∈ ∂Ω (22) 
 
Outflow Boundary Conditions 
 
At the downstream end, the free surface elevation can 
be predicted using Equation 7 in the  x direction or 
ηt + Cηx = 0  (23) 

Then, the horizontal velocities are predicted using 
Equation 16 in the x direction or 

u = C
η

η
+h

  (24) 

and in the y direction 
v = 0  (25) 
 
No-flow Boundary Conditions 
 
At the boundaries, which are paralel to the flow, the 
boundary conditions are equivalent to the reflecting 
wave boundary conditions. 

 
Boundary conditions for wave-current 
interaction cases 

 
The governing equations considered here were 
derived based on a steady ambient current. In the 
model tests, the following procedure is adopted. 
(1) Model is run with current only.  
(2) The results from the model settle down to a 

steady state. 
(3) After the steady state is reached, a sinusoidally 

varying surface elevation is imposed at the inflow 
or outflow boundary. This results in a wave train 
propagating into the computational domain. 

  
Please note that breaking waves are not included in 
the existing governing equations and in the present 
boundary conditions considered in this paper. But, 
Purwanto [8] discussed a Quasi-Equilibrium 
Turbulent Energy (QETE) model with boundary 
conditions for breaking and non-breaking waves. 
The QETE model was intended for simulation of 
(density) current only case. The density current is a 
type of current that occurs when fluid flow enters a 
fluid body of different density. 
 
Numerical set-up 
 
The numerical set-up consists of a basin with a 
submerged shoal. The basin is 18 m long and 18.2 m 
wide (Figure 1). Side walls are at y = 0 and 18.2 m. 
The centre of the shoal was located at (x,y) = (13,9.22) 
m with the perimeter given by 
(x – 13)2 + (y – 9.22)2 = ( 2.57)2 (26) 
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Figure 1.  A perspective view of numerical set-up. 
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Current only case 
 
In the first test, a flat water surface (initial value of η 
= 0) and a steady velocity of 0.10 m/s is imposed at 
the Southern boundary (x = 0 m). The computation is 
carried out with a mesh of ∆x = ∆y = 0.1 m and ∆t = 
0.02 s. The imposed current flows from x = 0 m to x = 
18 m, and reaches a steady state condition after 
about t = 65 s. Figures 2 shows a perspective view of 
the free surface elevation (upside down) at t = 65 s 
predicted by a numerical model based on the existing 
governing equations of Chen et al. [5] and the 
present boundary conditions. This figure indicates 
that the present boundary conditions go well with 
the existing governing equations. 
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Figure 2. Current only case (flow from x = 0 to x = 18 m). 

 
In the second test, a flat water surface (initial value 
of η = 0) and a constant inflowing velocity of 0.10 m/s 
is imposed in the opposite direction to that in first 
test, i.e. at the Northern boundary (x = 18 m) instead 
of at the Southern boundary. This leads to a steady 
current flowing from x = 18 m to x = 0 m of the basin 
(not presented here). 

 
Waves and opposing current 
 
Once the currents in the basin reach a steady state 
(after about t = 65 s) in the first test, the free surface 
elevation at the southern boundary (x = 18 m) is 
sinusoidally varied with time to generate an incident 
wave. The incoming wave specifications and the grid 
resolution remain the same as is used in the 
previous tests i.e. ∆x = ∆y = 0.1 m and ∆t = 0.02 s. A 
wave train with a period of 1.0 s and a wave height 
of 0.0118 m comes prependicularly to the fluid 
domain. At the incoming wave boundary (x = 18 m), 
the ambient current is allowed to pass through, 
leaving the flow domain. A perspective view of the 
predicted surface elevation at t = 20 s and at t = 40 s 
are shown in Figures 3 and 4 respectively. From 
these figures can be seen that the present boundary 
conditions are still suitable to the existing governing 
equations. 
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Figure 3. Waves propagating against a steady, opposing 
current at t = 20 s. 
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Figure 4. Waves propagating against a steady, opposing 
current at t = 40. 
 
Waves and current in same direction 
 
On top of the steady current field (second test), a 
sinusoidal wave train with a period of 1.0 s and a 
wave height of 0.0118 m is imposed at x = 18 m. The 
incoming wave period and wave height are same as 
is used in the last test. Perspective views of the 
predicted free surface elevation at t = 20 s and at t = 
40 s are shown in Figures 5 and 6 respectively in 
which the present boundary conditions are still going 
well with the existing governing equations. 
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Figure 5. Waves propagating with a co-flowing steady 
current at t = 20 s. 
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Figure 6. Waves propagating with a co-flowing steady 
current at t = 40 s. 

 
Conclusions 
 
A set of two-dimensional boundary conditions for the 
existing Boussinesq-type wave-current interaction 
equations is developed. The boundary conditions 
consist of for waves only case and for currents only 
case. Two kinds of the present boundary conditions 
are then combined in simulation of wave-current 
interaction.  
 
A numerical set-up consists of a basin of 18 m long 
and 18.2 m wide with a submerged shoal. The 
numerical model runs stably at least for 40 s in 
simulation time as shown by the numerical results. 
This indicates that the present boundary conditions 
are suitable to the existing governing equations. 
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